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About ML6

We are a group of Al and
machine learning experts
building custom Al solutions.

Amongst our engineers we
have several Apache Beam
contributors.




Development of ML applications
o What is training?
o  What is MLOps?

What does per entity training mean?
o Training multiple models rather than a single model?

o Why use a per entity strategy
Example per entity training pipeline
Bonus: Using trained models in a Runinference pipeline




What is machine learning model

training?




What is machine learning model training?
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Writing logic to detect the Beam macot is almost impossible




What is training a machine learning model?
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What is training a machine learning model?
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How are machine learning

applications built and deployed?




MLOps: Level 0

Manual experiment steps

Data extraction 5 Data
and analysis ! preparation training

staging/preproduction/production

Model evaluation
and validation




MLOps: Level 1
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MLOps: Level 2
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What is per entity training?




Example: Building multilingual chatbot

Bonjour!




What is per entity training?
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Example: Detect production defects using sensor data
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Example: Detect production defects using sensor data
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Why use a per entity strategy”?
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Multilingual Large Language Model

Dutch Model

German Model

Portuguese Model




Address fairness and bias
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Easier to detect problems
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Less powerful hardware required Easier to address bias
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Steps

Faster training & inference Easier debugging




But there is one big problem:

How do | manage the training of
all of these models?




Manage training pipelines

schedule.csv logs.json

1026 hPa 1016 hPa




The solution”? Apache Beam!

Apache Beam can handle

streaming and batch data
Apache Beam can easily

prepare data for training

Apache Beam can run on
different runners depending on
the model's requirements
Abstraction in ML libraries

allows us to train models with
few lines of code




Let's look at an example of a

per entity training pipeline




Predicting incomes per education level

Hours per Native
Age Workclass Education Marital Status Occupation Relationship Race Sex Week Country Compensation

25 Private 11th Never-married Machine-op-inspct. Own-child  Black Male 40 USA <=50K.
38 Private HS-grad Married-civ-spouse = Farming-fishing Husband  White Male 50 USA <=50K.
Local-gov = Assoc-acdm  Married-civ-spouse = Protective-serv Husband  White Male 40 USA >50K.

Private Some-college  Married-civ-spouse Machine-op-inspct. Husband  Black Male 40 USA >50K.
? Some-college Never-married ? Own-child  White Female 30 USA <=50K.




Pipeline overview

Clean Data

Group per
Education Level

Train Models

Save Models




Split data per education level

Accountant Bachelor

Plumber Bachelor

Occupation Education
P Cashier Bachelor
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model per dataset
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Pipeline overview

with beam.Pipeline(options=pipeline_options) as pipeline:
_ =
pipeline | "Read Data" >> beam.io.ReadFromText(known_args.input)
| "Split data to make List" >> beam.Map(lambda x: x.split(','))
"Filter rows" >> beam.Filter(custom_filter)
"Create Key" >> beam.ParDo(CreateKey())

"Prepare Data" >> beam.ParDo(PrepareDataforTraining())
"Train Model" >> beam.ParDo(TrainModel())
| "Save" >> fileio.WriteToFiles(path=known_args.output,
sink=ModelSink()))

|
|
| "Group by education" >> beam.GroupByKey()
I
|




Step 1. Data preparation

def custom_filter(element):
return len(element) = 15 and '?' not in element \
and ' Bachelors' in element or ' Masters' in element \
or ' Doctorate' in element




Step 1. Data preparation

class PrepareDataforTraining(beam.DoFn):
def process(self, element, *args, *xkwargs):
key, values = element

#Convert to dataframe

df = pd.DataFrame(values)

last_ix = len(df.columns) - 1

X, y = df.drop(last_ix, axis=1), df[last_ix]

# select categorical and numerical features
cat_ix = X.select_dtypes(include=['object', 'bool']).columns
num_ix = X.select_dtypes(include=['inté4', 'floaté4']).columns

# label encode the target variable to have the classes 0 and 1
y = LabelEncoder().fit_transform(y)

yield (X, y, cat_ix, num_ix, key)




Step 2: Training the models

class TrainModel(beam.DoFn):

def process(self, element, *args, *xkwargs):
X, y, cat_ix, num_ix, key = element
steps = [('c', OneHotEncoder(handle_unknown="'ignore'), cat_ix),
('n', MinMaxScaler(), num_ix)]

# one hot encode categorical, normalize numerical
ct = ColumnTransformer(steps)

# wrap the model in a pipeline
pipeline = Pipeline(steps=[('t', ct), ('m', DecisionTreeClassifier())])

pipeline.fit(X, y)

yield (key, pipeline)




Step 3: Saving models

class ModelSink(fileio.FileSink):
def open(self, fh):
self._fh = fh

def write(self, record):
_, trained_model = record
pickled_model = pickle.dumps(trained_model)
self._fh.write(pickled_model)

def flush(self):
self._fh.flush()




Extending the pipeline

Train Models

Caleulate
Metrics




Extending pipeline with metrics

class EvaluateModel(beam.DoFn):
def __init__ (self, model_uri):
file = FileSystems.open(model_uri, 'rb')
self.model = pickle.load(file)

def process(self, element, *args, *xkwargs):
inputs, labels = element
predictions = self.model.predict(inputs)
accuracy = sklearn.metrics.accuracy_score(y_pred=predictions,
y_true=labels)
f1 = sklearn.metrics.fl_score(y_pred=predictions, y_true=labels)
recall = sklearn.metrics.recall_score(y_pred=predictions, y_true=labels)

file = FileSystems.open(f'model_uri_metrics', 'web')
file.writelines([f'accuracy: {accuracy}', f'fl: {fl1l}', f'recall:
{recall}'])
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How does this pipeline fit in the MLOps architecture?
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Let's try out our model using the

Runinference trasform




Bonus: Inference in Apache Beam

Model 1
RunInference PostProcessing

Data Entity 1

Model 2

RunInference PostProcessing

Load Data Group per Entity

Data Entity 2




Summary

Apache Beam is more and more becoming technology that can
be used in advanced MLOps setups

Per entity strategy has several advantages
o Requires less powerful hardware
Faster training and inference
Easier to address bias
Easier to debug

Apache Beam a perfect candidate for per entity training

pipelines thanks to
o Excellent for data preprocessing and preparation
o Different runners depending on model requirements
o Abstraction in ML libraries that maoke it easy to train a model




Jasper Van den Bossche

https://www.linkedin.com/in/jasper-van-den-bossche/
https://github.com/jaxpr
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