Per Entity Training
Pipelines in Apache Beam

Jasper Van den Bossche
ML6

About ML6

We are a group of Al and
machine learning experts
building custom Al solutions.

Amongst our engineers we
have several Apache Beam
contributors.

Development of ML applications
o What is training?
o What is MLOps?

What does per entity training mean?
o Training multiple models rather than a single model?

o Why use a per entity strategy
Example per entity training pipeline
Bonus: Using trained models in a Runinference pipeline

What is machine learning model

training?

What is machine learning model training?

def contains_firefly():

&

3

beam

%

=

Writing logic to detect the Beam macot is almost impossible

What is training a machine learning model?

OO0
RN

@
OO
ONON

0‘0‘(}& .A\%’A’A.A‘NA -

~ T NI Y

WA ‘«\/»‘v ‘)‘{ =
A

What is training a machine learning model?

\"lr \\v‘
“ ’ (Photo contains
\N A\'/ k Beam firefly

‘6' W
'o

How are machine learning

applications built and deployed?

MLOps: Level 0

Manual experiment steps

Data extraction 5 Data
and analysis ! preparation training

staging/preproduction/production

Model evaluation
and validation

MLOps: Level 1

Model
analysis

1

Orchestrated experiment

Pipeline
Data Data Data Model Model Model Source deployment

analysis E validation preparation training evaluation validation code O —

repository

Offline

staging/preproduction/production

Batch
fetching ~ Automated pipeline

CD: Model

-
Data Ly Model Model Model serving

—) 2 o T
training 7 evaluation ~~ validation

T

¥
ML metadata store

Performance Prediction
monitoring service

i

MLOps: Level 2

Model
analysis

37 5

Data Orchestrated Source
analysis experiment code

CI: Build, test, & package

> e pipeline components

repository

| l

experimentation/development/test CD: Pipeline
deployment

Packages

staging/preproduction/production

Feature
store

registry
*

Automatedpipeline

CD: Model
Data Data Data Model Model Model > serving

7 evaluation validation

S ion validation preparation training

é

ML metadata store

Performance Prediction
monitoring service

i

What is per entity training?

Example: Building multilingual chatbot

Bonjour!

What is per entity training?

&

(/o\/o\

Vq,/“ W
‘g:" \: 4:
oé’w.\"u‘

W

‘g\..

%‘Z%o

Dutch Language Model

e

-

‘ii
',A
J/ A o
o§w ‘\‘\'4,“ Wi
39’4049" Pad)
5 N V t\'

.‘“ \‘\
#qkq.AVQL Aﬂhw.

English Language Model

7

ﬂ X
/N 'A AA.

\ ﬂ”w"'hu..
\' W

I

' et
VRY N

O/ \4'; O
.“ J o’ﬂ““‘¢
\“’ LA OR
."“(.‘3): ‘V.
//,\\»04/,:\\» [A

.‘

Italian Language Model

J

Example: Detect production defects using sensor data

“ \"l \\v‘

'\
.

\\!;\V

—_ K__J o S

Example: Detect production defects using sensor data

Sensor 2

\ 0/»0 W O
.§“’;/ \‘\ “‘V
4"*& 3
AR
] ‘ u\\

‘Ch, 7
/’“\V/

Cap not

ounted properly

~

J

No defect
found

Sensor 1

Sensor 4

N7 v?"
»«»»w
’ !
Vi“ vv‘v’.
n
Q“

Component 1
burnt

N

J

No defect
found

Why use a per entity strategy”?

_ /?}

/
N

Vi
\\

‘?@;.A'M%
\

X
RN

\
W

TR

AN
WO
A~ TN

0

N/
ISR
)

W
T

“04,’,3\'

©
WK
1S

O

i
AW/

O @,
SN\
NAORBORNTO
o W\

N Y

WA AZIA
BTN

0\
N

X
WA

V)7

/)
V1
4

GPU Cluster

/‘
"
\s J

CPU Machine

Lightweight GPU

)
@)
C
()
| .
)
y—
£
[o%e]
@)
RS
£
O
.
+
| .
)
+
0]
@)
LL

Multilingual Large Language Model

Dutch Model

German Model

Portuguese Model

Address fairness and bias

Output
Probabilities

Add & Norm

Feed
Forward

| Add & Norm IT-:
Slaleltnlofin Mult-Head

Feed Attention
Forward 7 7

 — |

Add & Norm
f—>| Add & Norm | Ve

Multi-Head Multi-Head
Attention Attention

t At

_ J . —_—

Positional & Q Positional
Encoding ¥ Encoding

Input Output
Embedding Embedding

I I

Inputs Outputs
(shifted right)

J

Easier to detect problems

A5

]

A2 | .23

A% | A% | A3

Confusion Matrix

Less powerful hardware required Easier to address bias

d4 | 36

Dutch Model

0% | .

1
g =
German Model Multilingual Large Language Model

Portuguese Model

Steps

Faster training & inference Easier debugging

But there is one big problem:

How do | manage the training of
all of these models?

Manage training pipelines

schedule.csv logs.json

1026 hPa 1016 hPa

The solution”? Apache Beam!

Apache Beam can handle

streaming and batch data
Apache Beam can easily

prepare data for training

Apache Beam can run on
different runners depending on
the model's requirements
Abstraction in ML libraries

allows us to train models with
few lines of code

Let's look at an example of a

per entity training pipeline

Predicting incomes per education level

Hours per Native
Age Workclass Education Marital Status Occupation Relationship Race Sex Week Country Compensation

25 Private 11th Never-married Machine-op-inspct. Own-child Black Male 40 USA <=50K.
38 Private HS-grad Married-civ-spouse = Farming-fishing Husband White Male 50 USA <=50K.
Local-gov = Assoc-acdm Married-civ-spouse = Protective-serv Husband White Male 40 USA >50K.

Private Some-college Married-civ-spouse Machine-op-inspct. Husband Black Male 40 USA >50K.
? Some-college Never-married ? Own-child White Female 30 USA <=50K.

Pipeline overview

Clean Data

Group per
Education Level

Train Models

Save Models

Split data per education level

Accountant Bachelor

Plumber Bachelor

Occupation Education
P Cashier Bachelor

Accountant Bachelor

Engineer Master

Plumber Bachelor S Engineer

Server High School

Barista High School

Cashier Bachelor et 9 ehool

Barista High School

model per dataset

Accountant

Bachelor

Plumber

Bachelor

Engineer

Master

Server

High School

Cashier

Bachelor

Barista

High School

Model 1

Model 2

Model 3

Pipeline overview

with beam.Pipeline(options=pipeline_options) as pipeline:
_ =
pipeline | "Read Data" >> beam.io.ReadFromText(known_args.input)
| "Split data to make List" >> beam.Map(lambda x: x.split(','))
"Filter rows" >> beam.Filter(custom_filter)
"Create Key" >> beam.ParDo(CreateKey())

"Prepare Data" >> beam.ParDo(PrepareDataforTraining())
"Train Model" >> beam.ParDo(TrainModel())
| "Save" >> fileio.WriteToFiles(path=known_args.output,
sink=ModelSink()))

|
|
| "Group by education" >> beam.GroupByKey()
I
|

Step 1. Data preparation

def custom_filter(element):
return len(element) = 15 and '?' not in element \
and ' Bachelors' in element or ' Masters' in element \
or ' Doctorate' in element

Step 1. Data preparation

class PrepareDataforTraining(beam.DoFn):
def process(self, element, *args, *xkwargs):
key, values = element

#Convert to dataframe

df = pd.DataFrame(values)

last_ix = len(df.columns) - 1

X, y = df.drop(last_ix, axis=1), df[last_ix]

select categorical and numerical features
cat_ix = X.select_dtypes(include=['object', 'bool']).columns
num_ix = X.select_dtypes(include=['inté4', 'floaté4']).columns

label encode the target variable to have the classes 0 and 1
y = LabelEncoder().fit_transform(y)

yield (X, y, cat_ix, num_ix, key)

Step 2: Training the models

class TrainModel(beam.DoFn):

def process(self, element, *args, *xkwargs):
X, y, cat_ix, num_ix, key = element
steps = [('c', OneHotEncoder(handle_unknown="'ignore'), cat_ix),
('n', MinMaxScaler(), num_ix)]

one hot encode categorical, normalize numerical
ct = ColumnTransformer(steps)

wrap the model in a pipeline
pipeline = Pipeline(steps=[('t', ct), ('m', DecisionTreeClassifier())])

pipeline.fit(X, y)

yield (key, pipeline)

Step 3: Saving models

class ModelSink(fileio.FileSink):
def open(self, fh):
self._fh = fh

def write(self, record):
_, trained_model = record
pickled_model = pickle.dumps(trained_model)
self._fh.write(pickled_model)

def flush(self):
self._fh.flush()

Extending the pipeline

Train Models

Caleulate
Metrics

Extending pipeline with metrics

class EvaluateModel(beam.DoFn):
def __init__ (self, model_uri):
file = FileSystems.open(model_uri, 'rb')
self.model = pickle.load(file)

def process(self, element, *args, *xkwargs):
inputs, labels = element
predictions = self.model.predict(inputs)
accuracy = sklearn.metrics.accuracy_score(y_pred=predictions,
y_true=labels)
f1 = sklearn.metrics.fl_score(y_pred=predictions, y_true=labels)
recall = sklearn.metrics.recall_score(y_pred=predictions, y_true=labels)

file = FileSystems.open(f'model_uri_metrics', 'web')
file.writelines([f'accuracy: {accuracy}', f'fl: {fl1l}', f'recall:
{recall}'])

OV

How does this pipeline fit in the MLOps architecture?

Model ML, Ops
analysis

i

Orchestrated experiment

Pipeline
Data Data Data Model Model Model deployment

I
analysis [validation preparation training evaluation —~ validation Solice g —)

repository

Offline

staging/preproduction/production

Automated pipeline

Dat: Dat: Dat: Model Model Model CO-Mode!
ata ata ata odel el o servin
extraction 7 validation preparation o training 7 evaluation ~~ validation g

4

ML metadata store

Per
monitoring

Let's try out our model using the

Runinference trasform

Bonus: Inference in Apache Beam

Model 1
RunInference PostProcessing

Data Entity 1

Model 2

RunInference PostProcessing

Load Data Group per Entity

Data Entity 2

Summary

Apache Beam is more and more becoming technology that can
be used in advanced MLOps setups

Per entity strategy has several advantages
o Requires less powerful hardware
Faster training and inference
Easier to address bias
Easier to debug

Apache Beam a perfect candidate for per entity training

pipelines thanks to
o Excellent for data preprocessing and preparation
o Different runners depending on model requirements
o Abstraction in ML libraries that maoke it easy to train a model

Jasper Van den Bossche

https://www.linkedin.com/in/jasper-van-den-bossche/
https://github.com/jaxpr
https://www.ml6.eu/
3=AM

NYC 2023

